详解全频带扬声器
时间:2012-09-01 11:10 来源:未知 作者:admin 点击:次
| 低端延伸问题 以外观而言,若尺寸相近,如同为6吋或7吋左右,锥盆中音和低音单元的差异实在有限,顶多是低音单元因需要较大的工作冲程而具备了较宽大而松软的悬边,其它的部分似乎“看起来”都差不多。但这也只是一般性法则,不见得放诸四海皆准。 那么,若给你一个6吋至7吋的中音单元,是否有办法把它改成能发低音?若只求发得出低音而不管音压和失真程度,应该是可以的。一般来说,单元的操作频率下限一般可以粗略地由它的自由共振频率看出来(注1),也就是一般习惯性标注为“fs”者。 那么,要如何调低这个频率呢?声学(音响)阻抗(注2)、振动部分质量、磁力强度,和悬挂顺服性等几项应是关键要素。其中,声学阻抗(或简称为『声阻』)与发声面积和工作频率直接相关,若以同尺寸直接发声和同频段工作而言,这项因素可视为相等而不必考虑(声阻这个概念对于低音的再生和全频段的发声效率息息相关,下次有机会再来谈这个主题)。所以,我们先来讨论其它的几项要素。 让我们回头看看低频段工作时,单元振膜的行为。其实粗浅的说低频动作就是“慢速”的往复运动,单位时间内往返的次数少,这就是低频了。那么,就基本的物理学观念来看,在一定的施力大小之下,物体的加速与其 质量成反比。所以,在其它条件相同或相似的情况下,振动质量愈大的单元,其自由共振频率就愈低。所以,若你稍仔细一些,去比较一下各种单元的数据资料,就会发现这项因素可说八九不离十。15吋以上的低音单元若自由共振频率在25hz以下,则振动部分质量常高达100公克以上。 要调低一个单元的自由共振频率,最简单的就是增加音盆的质量了。但是,这实在不是个好主意,因为重的音盆势必会带来低效率和很糟的高频延伸。所以,看起来此路不通。那么,接下来我们可以减少音盆的外部阻尼 ─ 主要有机械性阻尼和电气性阻尼二个因素。无论是哪一种阻尼,都是对音盆的动作施与制动力,阻止其原本的动作。 对此,我们可以用汽车的悬吊系统来作个比喻:传统的美国大车常为了舒适性而将悬挂调得非常软,要做到这点,简单说就是要用低弹性系数的弹簧和柔顺的避震器(减震筒),这样的组合便具备了很低的系统调谐频率(注3),因此就可以船过水无痕的吸收掉绝大多数的坑洞颠簸,因为这些外力都是短暂时间内的脉冲响应,转换成频率领域就是中高频,所以能够有效的被吸收而不会激起系统的共振。但遇上波长很长(也就是频率很低)的脉冲,如桥面的起伏,就常会产生二到三周期的缓慢上下晃动,这便是整套系统的共振频率被外力激发而引起的共振。 同样的,在喇叭单元上,要调低系统的共振频率也可以从悬挂的顺服性上面着手。将阻尼减弱,共振频率就降低了,直接了当。但采用此法还是会面临一些问题,我们再细看下去: 机械性阻尼方面:指的就是音盆悬边及音盆和音圈筒相接处附近黏附的波状折纹悬挂所施予音盆之制动力。这套悬挂系统除了对音盆整体的运动产生阻尼之外,另外对音盆的盆分裂共振也有抑制的作用,尤其是外围悬边。所以一个单元若换用不同的悬边,将会大幅改变其音色,因为整体的共振控制及音染的模式和程度都已不同。若为了调低系统共振频率而贸然大幅减低悬挂阻尼将会带来音染程度的增加,尤其是中音域部分。所以,调整机械阻尼须小心从事,适可而止。 电气性阻尼方面:指的其实是单元磁力对音圈的控制力。当然,单元的磁力愈大,驱动音圈的动力就愈大,同时制动力也愈大。强大的驱动力是我们所希望的,因为可以带来高效率低失真,但是如影相随的高阻尼却使得系统共振频率无法降低;这里,进退两难的态势便明明白白摆在眼前,因此我们只能取一个妥协。若再加入高端延伸的问题,这个妥协就更是不易取舍了。 高端延伸问题 影响一个单元高端工作状况的主要因素和低端一样是“电气因素”和“机械因素”,只是情形不尽相同。所谓电气因素指的就是音圈所造成之电感性负载,我在先前的文章就曾提过这件事,现在让我们来看得更深入些。 顾名思义,音圈就是一个电感线圈,若音圈单独存在,便是一个空心电感,此时,这个电感的电感量不高,而且很线性。不幸的是,音圈要在磁路结构内才能工作。没有例外的,音圈内就是中心磁极,这种结构就成了名符其实的铁心电感,这么一来电感量大幅提高,而且根据电感先天的低通特性,高频信号在这里就直接被大量衰减。更糟的是,随着音乐信号起舞的音圈与中心磁极的相对位置又不断改变,电感值和磁隙中的磁场便起了复杂的互动,严重的互相调变着,这种情况在大音量、宽频域发声时尤甚。此时,各种失真就直线上升,听感上便是模糊、粗糙、声音的纹理细节被抹平、立体音像溃散、音场扁平压缩。解决的方法是,在磁极上镀铜或插入铜片环,以使磁场短路,大幅减少相互调变,音圈的电感值也可大大的减低。此举可同时增加高频的延伸和降低失真。 另外,所谓机械性因素就可以从物理学的基本原理来讨论:施力的大小等于质量和加速度的乘积(f=ma),其中加速度也就是速率的改变率。想象一下,一片振膜要在往前推的过程中减速,最后在冲程的终点停住,然后再加速往另一个方向后退,若是在20khz,这全部的过程要在四万分之一秒完成!有兴趣的读者不妨自设一个冲程值,然后算算这样一个半周期简谐运动的顶点加速度值有多大。我想,不用去算就可以想见在四万分之一秒当中作180度方向改变的运动是有很大的加速度值! 所以,要做到这等高频响应,就要使振膜达到这么高的加速度。从上述简单的定律,途径只有二:减轻振膜质量和加大驱动力。但这么一来,许多的两难和矛盾也随之而来。 难解的两难和矛盾 振膜质量 先前提到,要降低系统共振频率最简单的就是增加振膜质量;当然,这是很容易做到的。但是,为了高频响应和发声效率,这样又算不上是好方法。那么,我们不要硬碰硬,让单体在低频时“看到”较重的音盆,而在高频时就只看到较轻的音盆。 听起来有点诡异? 这是全音域单体的设计中非常巧妙的一招,也就是“机械性”分频。实际操作时的情况是,低音时,整个音盆一起动作,渐往高频时,利用盆分裂特性使得音盆较重且声阻较大的外围“来不及”跟着一起动。此时,真正随着音圈动的只剩下较内圈部分,相对上这个“局部”区域的音盆比起整个面积当然就轻得多了。所以,这样一来,随着频率的不同,音盆“实际有效”的运动质量就不同。如此,高频到低频的响应就可以同时达到。 刚刚提到的“盆分裂”,说来轻描淡写,但稍微想想就可以体会到其中的重重困难。如何在某个频率以上使得一部分的振膜“来不及”跟着音圈动就很难控制了,再者,要让这些部分“既然跟不上就干脆别动”也不简单,因为,最怕的是跟不上音圈的驱动而自己乱动,徒然增加音染。而且要注意的是,单体实际在播放音乐时其中包含的频率很广,且时时刻刻在变。所以一旦这样的盆分裂不在控制之内就可以想见其失真之恐怖! 驱动力 先前有提到,若要让高频延伸,势必要有很强的驱动力来使音盆的加速度达到高频的需要。而驱动力的来源有二:音圈及磁力系统。把音圈的圈数绕多些就能产生较大的磁力,以便和磁力系统相互作用而产生较大的驱动力,但圈数多就意味着电感量的提高和质量的增加,这二者又都不利于高频,所以此路不通,音圈的设计仍要取一妥协。在此,“小而美”显然比“大而不当”要好得多。 再来,我们只好增加磁力了。虽然先前提过,强大的磁路系统会造成很强的阻尼而使得自由共振频率不易降低,但是为了要达到高频发声所需的振膜加速度,磁力的强度还是要比一般单体强上许多,才有办法将“不轻”的音盆(注4)推出那种级数的加速度值,否则就和一般的中音单体没多大分别了。至于阻尼过度的问题,只好由放松机械性阻尼来做补偿了。 系统整合问题 不就只有一只单体,何来的“系统”整合?这里的系统整合指二方面:一是音域平衡的微调,二是装箱调谐的设计。此二者常相互牵动彼此。 理论上,一个理想的全音域单体应该是在装箱后或固定在适当的障板上就可以直接连上后级,没有任何阻隔的发出天籁。但想想先前提过的种种进退两难的窘境,在设计者绞尽脑汁、呕心沥血,好不容易做出一只能够全音域发声的单体后,你还希望它能“全面性”毫无妥协的发出你想要的一切?请记住,在各种的进退两难中,绝大多数的出路便是“妥协”。 若你对stereophile熟悉的话,应该对他们刊出的各种器材测试图谱有些印象。一般来说,扩大机的频率响应图在20hz─20khz之间几乎就像是尺画的一样平直,若是管机,顶多在频域二端有些微的滚降;而喇叭的频率响应图谱就崎岖得多,用坏掉的锯子来画还比它规则些。若再看衰减瀑布图和离轴响应,那就更糟糕了,各种奇形怪状的高山深谷遍布全频段。 为什么喇叭的频率响应没办法作到像扩大机一样的平直?因为喇叭是机械性动作的组件,一动起来各个部分的能量传递、释放和储存会非常复杂,且相互关联。如此,免不了会存在许多的能量堆积或相互抵消的状况 ─ 能量堆积处形成共振峰;相互抵消处形成凹陷,这么一来崎岖的频率响应就不足为奇了。较佳的情况是崎岖的形态较缓和且均匀,如此可避免集中在一个特定的范围而形成明显的音染。若起伏很大或集中在一处就不妙了,强烈的音染不但扭曲了音域平衡,其共振峰处的能量不但较强,而且久久不散(常可在瀑布图上看出),所以会严重掩盖其本身和临近频段的解析力和微动态表现,就算用高q值陷波器来加以衰减还是无法解决不干净的残余共振。 另外,单体的阻尼状况也常会表现在频率响应曲线的走势上。若高端上扬,则是中低音域的阻尼相对上有些过度,听感上便是紧瘦结实,稍偏明亮;若是反过来低端上扬,则是中低音域的阻尼相对上有些不足,听感上就较为肥胖宽松而昏暗。 说了这么多喇叭单体的“黑暗面”,不外是要提醒大家,就算历年来各“传奇”的全音域单体各自在不同的领域理皆有其“超级制作”之处,但在无可避免的众多妥协之下,免不了有其取舍,而很难做得面面具到。就连乐器的制作都要投注极大的心力,才能获得音色的完美和全音域响度的平均,更何况是喇叭单体这个“二线”的模仿者。 所以,一个全音域单体,虽可以做到全音域发声,但不见得一定平直。常见的问题有:中音部分(有些是中高,有些是中低)有宽而缓的凸出,造成听感上某种程度的音染;还有部分是高端有缓和的滚降,造成听感上较为昏暗;当然还有过度阻尼造成的低端滚降,听感上自然是又瘦又紧,低音没有量感。 若是频率响应有些微的凸出,而这个音染又令人无法忍受,只好用一个陷波器来将这个凸出压平。若症状不严重,这个方式多半能有令人满意的结果。别瞧不起这样的组合,虽然这样一来后级到单体之间有了一些“阻碍”,但这算只是频率响应的修整,比起多路分音的喇叭中频率响应复杂的交叠和扭曲的相位,这还是单纯多多。而且,这类陷波器线路其实在许多喇叭的分音器上都可以找到,所以也不算什么见不得人的东西。 若是高端滚降,则多半是因为相对上磁力系统不够力所致,或者是音盆太大,用上“机械分频”的技俩还是拖累太重,如早年的12吋甚至15吋的全音域单体或多或少有这样的问题。此时,除了加个高音单体,别无他法。你会说,唉,这算是哪门子的全音域!别急着下定论,若妥善处理,将高音单体的响应从16─18khz处(或甚至更高),以每八度-6db的斜率缓缓切入,还是能够得到很好的结果,因为分频衔接处已避开了人耳敏感的音域,且一阶分音能保持相位一致,所以还是保有全音域的“大部分”好处。(若你手上刚好有altec 412c,又嫌它们没高音,请赶紧通知我,我很有兴趣购买。等我弄出好声,你就别想再买回去) 最后一种情况就是低音部分的滚降,这类全音域单体具有较强的阻尼,低音的听感常紧缩而短促,好处是细节清晰。此时若能使用适当的装箱调谐或甚至用号角负载来提升低音部分的声阻而提高效率,整体响应便很理想。若制作得当,这样的组合能提供最佳的全音域发声表现。 (责任编辑:admin) |